The UV aurora and ionospheric flows during flux transfer events

نویسندگان

  • D. A. Neudegg
  • S. W. H. Cowley
  • K. A. McWilliams
  • M. Lester
  • T. K. Yeoman
  • J. Sigwarth
  • E. Georgescu
چکیده

Far Ultra Violet (FUV) signatures in the polar ionosphere during a period of magnetopause reconnection are compared with ionospheric flows measured in the cusp ‘throat’ and dusk cell by the CUTLASS Hankasalmi HF radar. Regions of peak FUV emission in the 130.4 nm and 135.6 nm range, observed by the Polar spacecraft’s VIS Earth Camera, consistently lie at the turning point of the flows from the dusk cell, poleward into the throat, and at the equatorward edge of the region of high and varied radar spectral-width associated with the cusp. The Equator-S spacecraft was near the magnetopause at the time of the ionospheric observations and geomagnetically conjugate with the region of ionosphere observed by the radar. Flux transfer events (FTEs), suggestive of bursty reconnection between the IMF and geomagnetic fields, were observed by Equator-S prior to and during the periods of high FUV emission. Enhanced poleward ionospheric flow velocities in the polar cusp region, previously shown to be associated with bursty reconnection, consistently lie poleward of the enhanced FUV optical feature. The enhanced optical feature is consistent with the expected position of the largest upward region 1 field-aligned current, associated with electron precipitation, on the dusk edge of the merging gap. The optical feature moves duskward and equatorward during the course of the reconnection sequence, consistent with expansion of the merging line and the polar cap with newly added open magnetic flux by the FTEs. The DMSP F14 spacecraft passed through the enhanced FUV region and measured strong, structured electron precipitation far greater than in the adjacent regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auroral streamers and magnetic flux closure

[1] On 7 December 2000 at 2200 UT an auroral streamer was observed to develop above Scandinavia with the IMAGE-FUV global imagers. The ionospheric equivalent current deduced from the MIRACLE-IMAGE Scandinavian ground-based network of magnetometers is typical of a substorm-time streamer. Observations of the proton aurora using the SI12 imager onboard the IMAGE satellite are combined with measure...

متن کامل

Observations of ionospheric plasma flows within theta auroras

[1] This paper reports results from a detailed analysis of theta auroras that occurred during the passage of a magnetic cloud on 8 November 2000. The interplanetary magnetic field (IMF) was generally northward for more than 12 hours, while the y-component of the IMF changed signs several times. Auroral images of the Northern Hemisphere acquired from the Ultraviolet Imager (UVI) on board the Pol...

متن کامل

The dayside ultraviolet aurora and convection responses to a southward turning of the interplanetary magnetic field

We examine the large-scale ultraviolet aurora and convection responses to a series of flux transfer events that immediately followed a sharp and isolated southward turning of the IMF. During the interval of interest, SuperDARN was monitoring the plasma convection in the dayside northern ionosphere, while the VIS Earth Camera and the Far Ultraviolet Imager (UVI) were monitoring the northern hemi...

متن کامل

Journal of Geophysical Research: Space Physics HowMuch Flux Does a Flux Transfer Event Transfer?

Flux transfer events are bursts of reconnection at the dayside magnetopause, which give rise to characteristic signatures observed by a range of magnetospheric/ionospheric instrumentation. One outstanding problem is that there is a fundamental mismatch between space-based and ionospheric estimates of the flux that is opened by each flux transfer event—in other words, their overall significance ...

متن کامل

Signature of Saturn’s auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring

[1] Model simulations by Bunce et al. (2005a) have shown that direct precipitation of electrons in Saturn’s dayside cusp regions is not capable of producing significant FUV aurora. Instead, they suggested the possibility that the FUV bright emissions sometimes observed near noon are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, analogous to flux transfer e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001